Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.239
Filtrar
1.
An Acad Bras Cienc ; 96(3): e20230474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655921

RESUMO

The Pacific Oyster was introduced on Santa Catarina Island in 1987, experiencing processes of selection and genetic breeding since then. Such procedures may have led to the establishment of specific strains, given the saltier and warmer conditions of the Atlantic Ocean. This study employed microsatellite markers to compare allelic patterns of oysters cultivated in Santa Catarina, the USA, and Asia. Specific allelic patterns were revealed in the Santa Catarina samples, reflecting the time of selection/breeding of the oyster in this region. This result supports the effectiveness of the selection/breeding procedures and the demand for protection of this commercially important genetic resource.


Assuntos
Crassostrea , Variação Genética , Repetições de Microssatélites , Repetições de Microssatélites/genética , Animais , Crassostrea/genética , Crassostrea/classificação , Brasil , Variação Genética/genética , Cruzamento , Alelos
2.
Dis Aquat Organ ; 158: 75-80, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661139

RESUMO

In Great Bay Estuary, New Hampshire, USA, Haplosporidium nelsoni and Perkinsus marinus are 2 active pathogens of the eastern oyster Crassostrea virginica (Gmelin), that cause MSX (multinucleated sphere with unknown affinity 'X') and dermo mortalities, respectively. Whereas studies have quantified infection intensities in oyster populations and determined whether these parasites exist in certain planktonic organisms, no studies thus far have examined both infectious agents simultaneously in water associated with areas that do and do not have oyster populations. As in other estuaries, both organisms are present in estuarine waters throughout the Bay, especially during June through November, when oysters are most active. Waters associated with oyster habitats had higher, more variable DNA concentrations from these pathogenic organisms than waters at a non-oyster site. This finding allows for enhanced understanding of disease-causing organisms in New England estuaries, where oyster restoration is a priority.


Assuntos
Alveolados , Estuários , Haplosporídios , Animais , Haplosporídios/fisiologia , New Hampshire , Alveolados/isolamento & purificação , Crassostrea/parasitologia , Baías
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1901): 20230065, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497271

RESUMO

The Pacific oyster Crassostrea gigas lives in microbe-rich marine coastal systems subjected to rapid environmental changes. It harbours a diversified and fluctuating microbiota that cohabits with immune cells expressing a diversified immune gene repertoire. In the early stages of oyster development, just after fertilization, the microbiota plays a key role in educating the immune system. Exposure to a rich microbial environment at the larval stage leads to an increase in immune competence throughout the life of the oyster, conferring a better protection against pathogenic infections at later juvenile/adult stages. This beneficial effect, which is intergenerational, is associated with epigenetic remodelling. At juvenile stages, the educated immune system participates in the control of the homeostasis. In particular, the microbiota is fine-tuned by oyster antimicrobial peptides acting through specific and synergistic effects. However, this balance is fragile, as illustrated by the Pacific Oyster Mortality Syndrome, a disease causing mass mortalities in oysters worldwide. In this disease, the weakening of oyster immune defences by OsHV-1 µVar virus induces a dysbiosis leading to fatal sepsis. This review illustrates the continuous interaction between the highly diversified oyster immune system and its dynamic microbiota throughout its life, and the importance of this cross-talk for oyster health. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Sistema Imunitário
4.
Mar Drugs ; 22(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535454

RESUMO

Muscle atrophy is a detrimental and injurious condition that leads to reduced skeletal muscle mass and disruption of protein metabolism. Oyster (Crassostrea nippona) is a famous and commonly consumed shellfish in East Asia and has become a popular dietary choice worldwide. The current investigation evaluated the efficacy of C. nippona against muscle atrophy, which has become a severe health issue. Mammalian skeletal muscles are primarily responsible for efficient metabolism, energy consumption, and body movements. The proteins that regulate muscle hypertrophy and atrophy are involved in muscle growth. C. nippona extracts were enzymatically hydrolyzed using alcalase (AOH), flavourzyme (FOH), and protamex (POH) to evaluate their efficacy in mitigating dexamethasone-induced muscle damage in C2C12 cells in vitro. AOH exhibited notable cell proliferative abilities, promoting dose-dependent myotube formation. These results were further solidified by protein expression analysis. Western blot and gene expression analysis via RT-qPCR demonstrated that AOH downregulated MuRF-1, Atrogin, Smad 2/3, and Foxo-3a, while upregulating myogenin, MyoD, myosin heavy chain expression, and mTOR, key components of the ubiquitin-proteasome and mTOR signaling pathways. Finally, this study suggests that AOH holds promise for alleviating dexamethasone-induced muscle atrophy in C2C12 cells in vitro, offering insights for developing functional foods targeting conditions akin to sarcopenia.


Assuntos
Crassostrea , Animais , Atrofia Muscular , Suplementos Nutricionais , Serina-Treonina Quinases TOR , Dexametasona , Mamíferos
5.
Dis Aquat Organ ; 157: 113-127, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38546195

RESUMO

Ostreid herpesvirus 1 (OsHV-1) and its microvariants (µVars) cause economically devastating mass mortalities of oysters and pose a threat to the shellfish aquaculture industry globally. OsHV-1 outbreaks can cause up to 100% mortality in the Pacific oyster Crassostrea gigas. However, OsHV-1 and its variants have a broad host range and can infect at least 7 bivalve species, including bay scallops Argopecten irradians and eastern oysters C. virginica. Determining the susceptibility of economically and ecologically important bivalve species to OsHV-1 is critical for improving biosecurity and disease management to protect the aquaculture industry. Surveys of eastern oysters were conducted in June to August 2021 in the Maryland portion of the Chesapeake Bay to determine the prevalence and viral load of OsHV-1 at 5 aquaculture farms. Using quantitative PCR, OsHV-1 was not detected at any sites. Experiments examined the susceptibility of single stocks of eastern oysters and hard clams Mercenaria mercenaria to the virus and their ability to horizontally transmit it using OsHV-1 µVar SD (San Diego, California) and OsHV-1 µVar FRA (Marennes-Olreon, France). Results showed that OsHV-1 µVars did not cause mortality or symptomatic infection in the single stocks of eastern oysters and hard clams used in these experiments using natural infection pathways. However, the eastern oyster stock, when injected with OsHV-1, did transmit the virus to naïve Pacific oysters. Further experimentation using additional stocks and lines and establishment of surveillance programs along the east and Gulf coasts of the USA are necessary to prepare for the potential spread and impact of OsHV-1 related disease.


Assuntos
Crassostrea , Vírus de DNA , Herpesviridae , Animais , Maryland , Frutos do Mar , Aquicultura
6.
Fish Shellfish Immunol ; 148: 109513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521141

RESUMO

LPS induced TNF-α Factor (LITAF) is a transcription factor widely involving in activation of Tumor Necrosis Factor (TNF) and other cytokines in the inflammatory response. In the present study, a homologue of LITAF with a conserved LITAF domain was identified from the Pacific oyster Crassostrea gigas. The transcripts of CgLITAF were detected in all examined tissues with highest expression in hepatopancrease. The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgLITAF protein in haemocytes. While the mRNA level of CgLITAF changed slightly after LPS stimulation. When the siRNA of CgLITAF was injected to inhibit its expression, the apoptotic level of haemocytes decreased observably after LPS stimulation. Consistently, the transcripts of CgTNF3 and CgTNF4 (LOC105343080, LOC105341146), the apoptotic-related molecules including CgBax, CgCytochrome c, CgCaspase9 and CgCaspase3, were significantly suppressed in the CgLITAF-RNAi oysters. While the mRNA expression level of CgBcl was enhanced significantly in the CgLITAF-RNAi oysters. These results indicated that CgLITAF promoted haemocyte apoptosis by regulating the expression of apoptotic-related factors, suggesting its important role in the immune response of oysters.


Assuntos
Crassostrea , Animais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Hemócitos , Apoptose , Imunidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imunidade Inata/genética
7.
Mol Nutr Food Res ; 68(7): e2300469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522025

RESUMO

SCOPE: 3,5-Dihydroxy-4-methoxybenzyl alcohol (DHMBA) is found in oyster extracts in recent years and is reported to have antioxidant activity. Although it has been reported to be protective in various models of oxidative stress, the therapeutic effect of DHMBA on neurological damage caused by aging remains to be demonstrated. METHODS AND RESULTS: The present study investigates the potential functions of DHMBA in brain of old C57BL/6J mice and aging cell model. Administration of DHMBA improves working memory, reduces anxiety behavior, decreases the expression levels of cell cycle proteins, cycin-dependent kinase inhibitor 1(P21) and peptidase inhibitor 16(P16)  and inhibits neuronal loss in old mice. The data obtained from the aging cell model are consistent with those from the old mice. The interaction between DHMBA and Kelch-like ECH-associated protein 1 (Keap1) is predicted by molecular docking assay, and then it is verified by co-immunopricipitation (CoIP) that factor red lineage 2-related factor 2 (Nrf2)-Keap1 protein-protein interaction is inhibited by DHMBA. Protein levels of Nrf2 and its target genes, such as glutathione peroxidase 4(GPX4) and heme oxygenase 1 (HO-1), are detected in old mice and aging cell model. CONCLUSION: This study provides new evidence that explores the antioxidant mechanism of DHMBA and implies a potential role of DHMBA on antiaging in brain.


Assuntos
Álcoois Benzílicos , Crassostrea , Camundongos , Animais , Crassostrea/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Etanol/farmacologia , Encéfalo/metabolismo
8.
Arch Environ Contam Toxicol ; 86(3): 262-273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531980

RESUMO

In estuarine food webs, bivalve molluscs transfer nutrients and pollutants to higher trophic levels. Mercury (Hg) pollution is ubiquitous, but it is especially elevated in estuaries historically impacted by industrial activities, such as those in the U.S. Northeast. Monomethylmercury (MeHg), the organic form of Hg, is highly bioaccumulative and transferable in the food web resulting in the highest concentrations in the largest and oldest marine predators. Patterns of Hg concentrations in marine bivalve molluscs, however, are poorly understood. In this study, inorganic Hg (iHg), MeHg, and the total Hg (THg) in soft tissues of the northern quahogs (Mercenaria mercenaria), eastern oysters (Crassostrea virginica), and ribbed mussels (Geukensia demissa) from eastern Long Island sound, a temperate estuary of the western North Atlantic Ocean was investigated. In all three species, concentrations of THg remained similar between the four sampling months (May, June, July, and September), and were mostly independent of animal size. In quahogs, MeHg and iHg displayed significant (p < 0.05) positive (iHg in May and June) and negative (MeHg in July and September) changes with shell height. Variability in concentrations of THg, MeHg, and iHg, both inter- and intra-specifically was high and greater in quahogs and oysters (THg: 37, 39%, MeHg: 28, 39%, respectively) than in mussels (THg: 13%, MeHg: 20%). The percentage of THg that was MeHg (%MeHg) was also highly variable in the three species (range: 10-80%), highlighting the importance of measuring MeHg and not only THg in molluscs.


Assuntos
Crassostrea , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Bioacumulação , Monitoramento Ambiental , Cadeia Alimentar , Poluentes Químicos da Água/análise
9.
Mar Pollut Bull ; 201: 116251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479324

RESUMO

The kleptoparasitic pea crab Zaops ostreum lives within the gills of bivalves, including the economically important eastern oyster Crassostrea virginica. Previous research along the east coast of central Florida has found an average of 2.3 pieces of plastic per oyster. The goals of our research were to determine if filter-feeding oysters transfer microfibers to Z. ostreum via the crab: 1) actively consuming plastic particles, or 2) passively becoming entangled in microfibers. Our results show that both occur. While only 11.6 % of Z. ostreum (total n = 122) consumed microfibers, those that did had up to 14 pieces in their soft tissues. Similarly, only 7.4 % of Z. ostreum had microfibers entangled around their appendages. Mean lengths of consumed and entangled fibers were similar, 1.9 and 2.7 mm, respectively. Additional research is needed to understand the positive and negative impacts of microfibers associated with pea crabs on both species.


Assuntos
Braquiúros , Crassostrea , Animais , Florida , Ingestão de Alimentos
10.
Mar Pollut Bull ; 201: 116244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489909

RESUMO

The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Antioxidantes/análise , Esgotos/análise , Poluentes Químicos da Água/análise , Aquicultura , Monitoramento Ambiental/métodos
11.
Mar Pollut Bull ; 201: 116189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430680

RESUMO

The Negombo Lagoon is a coastal lagoon influenced by local communities that introduce waste into its ecosystem. This study examined seven sewage entry points, out of which five sites were chosen for oyster sampling based on availability. Physicochemical and microbiological parameters of water (measured in triplicate at each site, n = 84) and oyster samples (total length, TL > 6 cm, n = 30) were assessed. Variation in regional coliform contamination was analyzed employing a one-way analysis of variance (ANOVA). Results indicated that the northern part of the lagoon exceeded recommended coliform thresholds for swimming (total coliform concentration (TCC) < 126 most probable number (MPN)) and seafood consumption (TCC < 100 MPN/g), indicating the presence of Escherichia coli. Water quality indices affirmed fecal pollution, except in the southern part of the lagoon. Furthermore, the study found high oyster consumption (76.7 %), elucidating that oysters from the northern part of Negombo Lagoon pose health risks.


Assuntos
Crassostrea , Humanos , Animais , Sri Lanka , Ecossistema , Natação , Alimentos Marinhos
12.
J Hazard Mater ; 469: 133952, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447367

RESUMO

This study successionally monitored how nano- and micro-sized polystyrene beads (MNPs) influence larval mortality, growth, and attachment behavior of the Pacific oyster Crassostrea gigas related to MNP diameter and concentration. D-shaped larvae were sequentially exposed to three-diameter MNPs (0.55, 3.00, 6.00 µm) at five concentrations (0, 0.1, 1.0, 10, 20 µg/mL), and their mortality, growth stages and attachment were observed daily until they die. In addition, MNP intake and accumulation in larvae at each growth stage were determined using fluorescent beads. Deterioration in larval growth and survival was observed under all the exposure conditions, while significant negative effects on the growth parameters were defined with smaller MNPs at lower concentrations. Fluorescent signals were detected in larval digestive tracts at all except D-shaped larval stage, and on the mantle and foot in pediveligers. Therefore, MNP intake adversely affects larval physiological conditions by the synchronal effects of MNP size and concentration. Our findings highlight the implications of MNP characteristics on Pacific oyster larvae, emphasizing the interplay between size, concentration, and physiological responses, crucial for mitigating nanoparticle pollution in marine ecosystems.


Assuntos
Crassostrea , Poliestirenos , Animais , Larva , Poliestirenos/toxicidade , Crassostrea/fisiologia , Ecossistema , Poluição Ambiental , Corantes
13.
Mar Environ Res ; 196: 106434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460223

RESUMO

The adverse impacts of microplastics (MPs) or ocean acidification (OA) on mollusks have been widely reported, however, little is known about their combined effects on mollusks. The oysters Crassostrea gigas were exposed to two sizes of polystyrene MPs with 1 × 104 particles/L (small polystyrene MPs (SPS-MPs): 6 µm, large polystyrene MPs (LPS-MPs): 50-60 µm) at two pH levels (7.7 and 8.1) for 14 days. The antagonistic effects between MPs and OA on oysters were mainly observed. Single SPS-MPs exposure can induce CAT enzyme activity and LPO level in gills, while LPS-MPs exposure alone can increase PGK and PEPCK gene expression in digestive glands. Ocean acidification can increase clearance rate and inhibit antioxidant enzyme activity, whereas combined exposure of OA and SPS-MPs can affect the metabolomic profile of digestive glands. This study emphasized that the potential toxic effects of MPs under the scene of climate change should be concerned.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Crassostrea/metabolismo , Poliestirenos/toxicidade , Plásticos , Água do Mar , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Poluentes Químicos da Água/metabolismo , Antioxidantes , Biomarcadores/metabolismo
14.
Mar Environ Res ; 196: 106409, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461608

RESUMO

Abrupt drops in salinity that occur in tropical estuaries during the equatorial rainy season led to hyposaline conditions which may reduce the populational density of oysters. To assess the effect of saline stress on physiological and metabolic responses of the Manabi oyster (Crassostrea cf. corteziensis) was exposed to 35, 30, 20,10 and 5‰ concentrations during 96 h. Inorganic osmolytes, pH, salinity, haemocyanin and protein concentration in the plasma as well as the number of oysters with closed valves were recorded. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and catalase (CAT) activity were analysed. Inorganic osmolytes and internal salinity were elevated in oysters exposed to 35, 10 and 5‰. A significant number of oysters with valve closure was observed in 10 and 5‰, which coincided with a decline in physiological pH and changes in haemocyanin concentrations. AST activity and AST/ALT ratio were reduced under 35, 10 and 5‰, and CAT increased in oysters exposed to 35‰; but protein concentration, LDH and ALP did not show significant variations. Metabolic adjustment and behavior of the Manabi oyster could explain tolerance and survival (at least for a short term) to hyposaline stress in tropical estuarine ecosystems.


Assuntos
Crassostrea , Animais , Crassostrea/fisiologia , Ecossistema , Antioxidantes , Estresse Oxidativo , Biomarcadores/metabolismo
15.
Mar Environ Res ; 196: 106433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489918

RESUMO

The study aimed to obtain environmentally relevant microfibers (MFs) from polyester fabric and assess their impact on the oyster Crassostrea gasar. MFs were obtained by grinding the fabric, and their accumulation in oysters gills and digestive glands was analyzed after exposure to 0.5 mg/L for 2 and 24 h. Additionally, a 48 h depuration was conducted on the oysters exposed for 24 h. Sublethal effects were assessed in oysters exposed for 24 h and depurated for 48 h, using biomarkers like Catalase (CAT), Glutathione S-transferase (GST), and Glutathione Peroxidase (GPx), along with histological analyses. Polyester fabric grinding produced significant MFs (average length: 570 µm) with degraded surface and increased malleability. Oysters showed increased MF accumulation in digestive glands post-exposure, with no impact on antioxidant enzymes. Depuration decreased MFs accumulation. Histological analysis revealed accumulation in the stomach and brown cells, possibly indicating inflammation. This raises concerns about MFs bioaccumulation in marine organisms, impacting the food chain and safety.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Crassostrea/metabolismo , Poliésteres/metabolismo , Antioxidantes , Ingestão de Alimentos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
16.
Appl Environ Microbiol ; 90(4): e0005224, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38466091

RESUMO

Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.IMPORTANCEPacific oysters are the most economically important and widely farmed species of oyster, and their production depends on healthy oyster spat. In turn, spat health and productivity are affected by the associated microbiota; yet, studies have not scrutinized the effects of temperature and pCO2 on the prokaryotic and eukaryotic microbiomes of spat. Here, we show that both the prokaryotic and, for the first time, eukaryotic microbiome of Pacific oyster spat are surprisingly resilient to changes in acidification, but sensitive to ocean warming. The findings have potential implications for oyster survival amid climate change and underscore the need to understand temperature and pCO2 effects on the microbiome and the cascading effects on oyster health and productivity.


Assuntos
Crassostrea , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Mudança Climática , Oceanos e Mares
17.
Mar Biotechnol (NY) ; 26(2): 364-379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483671

RESUMO

Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.


Assuntos
Crassostrea , Melaninas , Pigmentação , Transcriptoma , Animais , Melaninas/metabolismo , Melaninas/biossíntese , Crassostrea/genética , Crassostrea/metabolismo , Pigmentação/genética , Tirosina/metabolismo , Exoesqueleto/metabolismo , Transdução de Sinais , Perfilação da Expressão Gênica , AMP Cíclico/metabolismo
18.
Ecotoxicol Environ Saf ; 274: 116236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503101

RESUMO

Ambient ultraviolet radiation (UVB) from solar and artificial light presents serious environmental risks to aquatic ecosystems. The Pacific oyster, Crassostrea gigas, perceives changes in the external environment primarily through its mantle tissue, which contains many nerve fibers and tentacles. Changes within the mantles can typically illustrate the injury of ambient UVB. In this study, a comprehensive analysis of phenotypic, behavioral, and physiological changes demonstrated that extreme UVB radiation (10 W/m²) directly suppressed the behavioral activities of C. gigas. Conversely, under ambient UVB radiation (5 W/m²), various physiological processes exhibited significant alterations in C. gigas, despite the behavior remaining relatively unaffected. Using mathematical model analysis, the integrated analysis of the full-length transcriptome, proteome, and metabolome showed that ambient UVB significantly affected the metabolic processes (saccharide, lipid, and protein metabolism) and cellular biology processes (autophagy, apoptosis, oxidative stress) of the C. gigas mantle. Subsequently, using Procrustes analysis and Pearson correlation analysis, the association between multi-omics data and physiological changes, as well as their biomarkers, revealed the effect of UVB on three crucial biological processes: activation of autophagy signaling (key factors: Ca2+, LC3B, BECN1, caspase-7), response to oxidative stress (reactive oxygen species, heat shock 70, cytochrome c oxidase), and recalibration of energy metabolism (saccharide, succinic acid, translation initiation factor IF-2). These findings offer a fresh perspective on the integration of multi-data from non-model animals in ambient UVB risk assessment.


Assuntos
Crassostrea , Animais , Crassostrea/metabolismo , Raios Ultravioleta/efeitos adversos , Ecossistema , Resposta ao Choque Térmico , Transcriptoma
19.
Sci Total Environ ; 925: 171679, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494031

RESUMO

Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.


Assuntos
Crassostrea , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Crassostrea/fisiologia , Brasil , Antioxidantes/análise , Biomarcadores/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
20.
Molecules ; 29(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398650

RESUMO

Oysters contain significant amounts of the zinc element, which may also be found in their proteins. In this study, a novel zinc-binding protein was purified from the mantle of the oyster Magallana hongkongensis using two kinds of gel filtration chromatograms. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that its molecular weight was approximately 36 kDa. The protein identified by the Q-Exactive mass spectrometer shared the highest sequence identity with carbonic anhydrase derived from Crassostrea gigas concerning amino acid sequence similarity. Based on homologous cloning and RACE PCR, the full-length cDNA of carbonic anhydrase from Magallana hongkongensis (designated as MhCA) was cloned and sequenced. The cDNA of MhCA encodes a 315-amino-acid protein with 89.74% homology to carbonic anhydrase derived from Crassostrea gigas. Molecular docking revealed that the two zinc ions primarily form coordination bonds with histidine residues in the MhCA protein. These results strongly suggest that MhCA is a novel zinc-binding protein in Magallana hongkongensis.


Assuntos
Anidrases Carbônicas , Proteínas de Transporte , Crassostrea , Animais , DNA Complementar/genética , Simulação de Acoplamento Molecular , Clonagem Molecular , Crassostrea/metabolismo , Anidrases Carbônicas/metabolismo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...